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Abstract-We show how, starting from an elementary, one-dimensional thermoelastic theory of
beams, we may use an asymptotic analysis to approximate the temperature distribution in thin.
orthotropic laminated beams and obtain an explicit, mean square error estimate using the hypercircle
method. The temperature distribution gives rise to stresses that also are approximated using the
asymptotic-hypercircle approach, as we illustrate in the analysis of a simple laminated beam. The
relative error in both the temperature and stress distributions can be reduced to the order of
magnitude of an arbitrary power of the ratio of the beam thickness to a characteristic length
associated with the external the.rmalload. The method does not require any a priori assumptions
regarding the thickness distributions of the temperature, displacements or stresses.

INTRODUCTION

Building on the work of Rychter (1988), Duva and Simmonds (to appear) have shown that
an elementary beam theory solution is all that is needed to generate two-dimensional strains
and stress fields of arbitrary mean square accuracy in an orthotropic beam, provided that
we demand no more detail at the ends of the beam than the shear stress resultant or the
average vertical displacement and the bending moment or the average rotation. The key to
obtaining a relatively small error in the two-dimensional strain field inferred from one
dimensional beam theory is to construct a statically admissible strain field and a kine
matically admissible strains field whose through-thickness distributions are nearly equal.
The program for this construction laid out by Duva and Simmonds was shown to be
applicable even if the shear modulus is very much smaller than the axial extensional
modulus.

In this paper we modify the program for obtaining accurate two-dimensional strain
and stress fields in an orthotropic beam subject to mechanical loads to obtain accurate two
dimensional temperature, stress and strain fields in an orthotropic beam subject to a static
thermal load. To show that our procedure applies to stratified media as well, we end the
paper by analyzing a simple laminated beam in which significant thermal stresses arise.

As temperature can be determined independently ofthe deformation, we can construct,
by inference from the axial distribution of temperature and the transverse temperature
gradient delivered by elementary beam theory, approximate two-dimensional temperature
fields that are polynomials ofdegree 2N+ I in the thickness coordinate. Their relative mean
square error is oforder (HI1)2N+ I, where H is the thickness of the beam and lis a computable
characteristic length associated with the thermal load. For beams with large axial con
ductivities, the relative mean square error is of order (HLI1 2)'v, where L is the length of the
beam. In obtaining these error estimates we assume that at the ends of the beam the
prescribed temperatures or heat fluxes are compatible with the fields we construct. If not,
then a full two-dimensional treatment of the ends must be considered, as discussed, for
example, in the Appendix to Chapter 10 of Boley and Weiner (1960), and the solution we
construct is valid only in the interior of the beam away from the ends. The boundary layer
fields at the beam ends may be of primary importance in predicting delamination failure of
a layered beam, as noted by Chen et al. (1982).

In general, the inferred two-dimensional temperature field will produce stresses due to
kinematic conditions at a boundary or an interface in a laminated beam, and due to the
inhomogeneity of the temperature field itself. Once the temperature field is known, the
program laid out by Duva and Simmonds can be used to generate stress and strain fields of
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any desired accuracy (although not in excess of the accuracy to which the temperature field
is determined). This procedure is similar to that put forward by Boley and Weiner, differing
in that Boley and Weiner take the temperature field as given and do not obtain explicit
error estimates.

THE GOVERNING EQUATIONS

Let Oxyz denote a fixed, right-handed Cartesian reference frame and consider a
rectangular beam that, when undeformed, occupies the region 0 ~ x ~ L, Iyl ~ D, Izl ~ H;
see Fig. I. We assume that the beam is built-in at x = 0 and traction-free at x = L. The
upper and lower surfaces of the beam are traction-free, there are no body forces, the broad
faces of the beam are insulated, and the upper and lower surfaces of the beam are held at
incremental temperatures

T(x, ±H) = ± To()(x/L), (1)

where Tmeasures temperature above some constant absolute reference temperature TR and
() is a prescribed dimensionless incremental temperature. As stated above, we assume the
thermal boundary conditions at the ends of the beam are met, so they need not be made
explicit. We further assume that the beam is homogeneous and orthotropic with material
axes aligned with the reference frame, and that linear elastic plane stress theory and the
linear theory of heat conduction in the xz-plane apply. This configuration was chosen for
definiteness and simplicity, although any configuration could be used.

The field equations consist of the mechanical and thermal equilibrium equations, the
compatibility equation for strains, the stress-strain relations, and Fourier's Law relating
the heat flux and the temperature. We consider only the thermal problem in detail, as
the mechanical problem has been discussed by Duva and Simmonds. First. we choose a
kinematically admissible temperature field T K that satisfies the prescribed temperatures on
the upper and lower faces of the beam (z = ±H). Thermal equilibrium is satisfied by
introducing aflux potential P so that the Cartesian components of the statically admissible
heat flux qS are given by

(2)

where a subscript preceded by a comma indicates partial differentiation. To incorporate
Fourier's Law we define

tJ.qx == P.z+kxT~ = q;-q:

tJ.qz == -P.x+kzT~ = q:-q:,

(3a)

(3b)
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Fig. I. An undeformed rectangular orthotropic beam of length L and height 2H subjected to the
boundary conditions as shown. It is assumed that a state of plane stress holds and that there is no

heat flow perpendicular to the xz-plane.
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where k.t and kz are the conductivities in the axial and thickness directions, respectively,
and qK = (q:, tC) is a kinematically admissible heat flux.

According to the hypercircle method of Prager and Synge (1947), qS and qK must lie
on a hyperplane and hypersphere, respectively, in a function space of infinite dimension.
As the actual heat flux q is both statically and kinematically admissible, it must lie on the
hypercircle defined by the intersection of the hyperplane and hypersphere mentioned above.
Further, the center of the hypercircle is given by ~(qS+qK). Thus, the radius of the hyper
circle,

(4)

is the magnitude of the error when the hypercircle center is taken as an approximation to
q, where

(5)

is the square of the Dirichlet norm. The actual temperature field is both kinematically and
statically admissible and satisfies the steady-state energy equation

(6)

We will show how, by starting with the lowest order approximation to T (analogous to
the elementary beam theory solution in the mechanical context) and performing simple
integrations through the thickness, we may construct an approximation to Twith a formal
error as small as we please.t We then use (3a, b) to construct approximate heat flux
potentials such that the computable relative error, lI~qll/llq(O)II, is bounded by a constant
time as high a power of Hil as we please. The term q(O) is the lowest order approximation
to the actual heat flux q, which is unknown and thus unavailable for computing the relative
error.

TEMPERATURES. STRESSES AND ERROR ESTIMATES IN A HOMOGENEOUS BEAM

To emphasize the key points, we confine our analysis in this section to a homogeneous
(i.e. non-laminated) orthotropic beam. In the next section we generalize to a layered beam.
We introduce the dimensionless variables and parameters

e= xlL, C= zlH, T= ToT, e = HIL,

and rewrite (6) and (1) as

(7a)

(7b)

In an isotropic material f = 1. We assume that the prescribed temperatures or heat fluxes
at the ends of the beam are odd is z; thus, the dimensionless temperature T will be odd in
C. Integrating (7a) twice with respect to Cgives

t Alternatively. we could start with the "compatibility" condition k.tPo1Ut+k,P.u'" 0 satisfied by the actual
flux potential. just as in the mechanical context we started with the strain compatibility equation satisfied by the
Airy stress function. This equation would be preferable to (6) if heat fluxes rather than temperatures were
prescribed on the faces of the beam.
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t(¢,O = A(¢K-e21 r' «(-s)r(¢,S)dS] ,,'
~LJo .~~

(8)

where A (e) is a function of integration. Imposition of the boundary conditions (7b) gives

(9)

where

and

It = l' (l-')st(e,s)ds+f (l-s)(t(e,s)ds.

Note that in the elementary, one-dimensional theory of thermoelastic beam(shell)s
developed by Libai and Simmonds (1988), the average axial stress u due to heating in a
homogeneous, isotropic beam is

u =2EH(e-ai)

where e is the average axial strain, a is the coefficient of thermal expansion, E is the
extensional modulus, and i is the mean temperature increment (T = i+ TR). From their
equation (T.9) and our (7b), i = O. The bending moment due to heating is

where" is the curvature and tJ. is the transverse temperature gradient

which follows from their equation (T.9). As the underlined term disappears in a linear
theory, t(O) can be expressed in terms of tJ. as tJ.H'/To. As will be shown, the stresses due to
heating are zero; thus, e = 0 and" = - atJ..

If we seek an approximate solution of the form

then (9) yields the recurrence relation

(10)

Application of this relation gives, for n = 1,

n = 1,2, ... ,N. (11)

and, for arbitrary n,

(l2a)

(l2b)

Here, the superscript [2n] on (J indicates 2n differentiations and 9[211+ 1) is an odd polynomial
in , of order 2n+ 1. We note that the approximation
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gives rise to zero local heat fluxes at the beam ends only if8' and 0'" are zero there. However,
the overall heat flux at the ends of the beam is zero in any case.

The dimensionless temperature field t gives rise to a kinematically admissible heat flux
qK. This temperature field has the added virtue-because it satisfies (6) asymptotically to
order e2N+ 2-that, in conjunction with (3a, b), it can be used to construct a statically
admissible heat flux qS that is near qK. We introduce a dimensionless heat flux potential

so that (3a, b) take the form

!!J.qx = qo(e-2p.{+kt.~),

!!J.qz = qoe- I
( -P.~+t.{),

where qo = kzTo/L.
We now make the approximation

Noting (13a, b), we make II!!J.qll small by setting

PIn) = _kt(n-I)
.{ ,~,

P
In) _ TIn)
.~ - .{,

(13a)

(13b)

(14)

(ISa)

(ISb)

where n = 0, 1, ... , Nand t(-I) is taken to be zero. Integrating (1Sa) with respect to , gives

(16)

where An(~) is a function of integration. Differentiating (16) with respect to ~ and sub
stituting into (ISb), we obtain

(17)

Using (II) to rewrite TIn) in terms orr(n-I) (for n ~ 1) and integrating (17) once with respect
to~, we get

(18)

where the integration constant which has no physical meaning has been ignored. For n = 0,
(16) gives

p(O) = f6(9) ds (19)

where, again, the constant of integration is ignored.
To determine the size of lI!!J.qll, given an N-term expansion for t, we need not explicitly

calculate the pIn) if they can be computed in principle as outlined above. Neither need we
calculate them to make the solution for all quantities of interest explicit. So, instead of
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filling out the expansion for p, we move immediately to the computation of the size of the
relative error.

Suppose p(O) through peN) are calculated from (16) and (18) so that (15a, b) are satisfied.
Then (13a, b) give

(20a)

(20b)

where ,(N) has the form given in (l2b). Substituting into (5) we find

(21)

To simplify (21), which expresses the mean square error in terms of high order derivatives
of the thermal load e, we define the characteristic length / associated with eby

(22)

so that rapid variations in erender /IL small. Then,

(23)

To compute the relative error we note that

and hence

so the relative error is

lI~qll _ (H)2N+1
IIq(O)II- 0 / .

For example, ife= cos (ne), then, to first order,

The error in the heat flux can be computed from (23) as

(24)

(25)
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II~qll (H)3
II q(O) II ~ 0.0065£2 T .
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Note that from (22) with M = 3 we obtain L = I, as expected for the given thermal loading.
Finally, we note that if f = e-1k,k = 0(1), as would be the case with a composite

reinforced in the axial direction with continuous and highly conductive fibers, then (10)
and (14) must be replaced with

, = ,(0) +e,(I) + +eN,(N)

p = p(O)+ep(I)+ +eNp(N).

(26a)

(26b)

The analysis required to determine the size of the relative error if f = O(e- I
) is as given

above, except that now

so that

Hence,

II~qll (HL'f
IIq(O)1I = 0 12)' (27)

A statically admissible stress field resulting from heating is most easily obtained through
the introduction of the Airy stress function F that must satisfy the strain compatibility
relation

(28a)

which follows from equations (AI)-(A3) of the Appendix. Here E;", E: and G are elastic
moduli, vis Poisson's ratio, and IXx and IX: are coefficients ofthermal expansion. For isotropic
materials, (28a) reduces to

(28b)

Introducing a dimensionless stress function through

(29)

we recast (28a) in the form

(30)

where

For the specific configuration described in the previous section, the upper and lower surfaces
of the beam are traction-free and there is no moment or shear at the free end of the beam.
Hence we have the boundary conditions
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(31 )

If we seek asymptotic approximations of the form

(32)

substitute (32) into (30), and use the previously obtained expansion for t in powers of e2
,

we obtain a recurrence relation for j'n) analogous to (II). The details of the required
integrations can be found in Duva and Simmonds. These manipulations, along with the
imposition of the boundary conditions in (31) and the use of (12a), give

PO) = 0 j(l) = 0

j (2) (. (\) (0) (k-' I){)"(;&)~.,'" = - :xt.;, + t.~, = :x - u .. <.. (33)

Because p21 is the first nonzero term in the expansion for f, the dominant axial stress due
to the temperature field is

If the product ofk and ais unity then the dominant axial stress is of yet higher order. This
is consistent with (28b), which shows that, if the material is isotropic, the stresses are
identically zero.

In this manner a dimensionless stress function of the form of (32) with a formal error
of 0(e2N + 4) can be computed for a dimensionless temperature field of the form of (10) with
a formal error of 0(e 2N+ 2). Displacements giving rise to a kinematically admissible strain
field that is nearby the strain field obtained from these statically admissible stresses can be
produced following the program of Duva and Simmonds, and is omitted here. The size of
the relative error will be 0«H/I)2.\' .... 2). If the displacements so calculated fail to satisfy the
boundary conditions at the ends of the beam, then a full two-dimensional analysis is
required there, see Gregory and Wan (1984).

Because of the lack of severe displacement constraints in the configuration chosen, the
only stresses arising in the thermally loaded homogeneous beam are the so-called free-body
incompatibility stresses (Boley and Weiner) due to the spatial variation of the temperature
field. In a laminate, because of the continuity of tractions and displacements at the interface,
there is a much stronger coupling between the thermal strains and the stress. This is
illustrated in the next section.

APPLICATION TO A LAMINATED BEAM

We consider a simple yet realistic thermally loaded laminated beam consisting of a
central, isotropic layer occupying the region Izj :::; H/2, and two outer, orthotropic layers
occupying the regions H/2 < Izi :::; H; see Fig. 2. The orthotropic material axes are aligned

z

{
stre:,dfree
T.To8(x/L)

:/1--------1.'-----:-------, (L, H)

Clamped} x + (L, H 12)

and itressand-freeinsulated
+ insulated

b
stress· free

and
T ••To8(x/L)

Fig. 2. An undeformed symmetrically laminated rectangular orthotropic beam of length Land
height 2H subjected to the boundary conditions as shown. The thermal and mechanical bonding at
z = ±! is taken to be perfect. It is assumed that a state of plane stress holds and that there is no

heat flow perpendicular to the x:·plane.
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with the reference axes. Quantities associated with the outer/inner layers are marked with
a +1- subscript. We take the conduction coefficients k+:o k-z, and k_x to be equal, as
would be the case if both materials were the same continuous fiber-reinforced material with
the fibers in the x-direction in the outer layers and perpendicular to the xz-plane in the
inner layer. The thermal and mechanical boundary conditions are as described in the
previous section. Symmetry allows us to consider only the portion of the beam in the upper
half plane, with the conditions

T(x,O) = O'zz(x,O) =: u(x,O) = 0, (34)

where u is the displacement in the x-direction.
Our aim is to construct a suitable temperature distribution in each layer following the

program decribed in the previous section. Integrating (6) in each layer, we obtain

(35)

(36a)

(36b)

where k_ = I, (+ = I and ,_ = O. Boundary conditions (7b) give B_ = 0 and B+ =
8(e)-A+(e). Thus

T+ =8(e)+A+(e)(,-I)-e2k+[ f' (C-S)T+(e,S)ds]J, .~~

L =A_(eK-e2
[ f' «(-S)L(e,S)ds] .Jo .~~

The functions of integration A ± (e) are determined by the interface conditions.t With a
perfect thermal bond, the continuity of temperature and heat flux at , =: ! are expressed as

T+(e, D=: L(e, D
!+.,(e, D= L.,(e, !).

Insertion of (36a, b) gives

where

If we seek a solution of the form

then (38) yields the recurrence relation

(37a)

(37b)

(38)

(39)

t For a many-layered laminate it is sometimes convenient to write the boundary and interface conditions in
matrix form. To do so we would have to write the unknown functions A%(,) as truncated series in 8

2 analogous
to (10).
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(40)

The application of this relation gives, for n = I,

r~) = (l/24)(I-08"(~)[I-k+(1-4( _4(2)]

r<:) = (1/12)(0" (~)(I +k+ _2(2).

(4Ia)

(4Ib)

Note that for k+ = I, (4Ia, b) both reduce to (12a). For arbitrary n, a relation of the form
of (12b) holds in each layer. If N-term expressions for r of the form (10) are obtained in
both layers, the relative error will be given by (25), or, in the case that k+ = O(e- I), by
(27).

To calculate stresses we will take, consistent with the material model so far, the
moduli E+: = E_: = E-x and the coefficients of thermal expansion cx+: = cx_: =CX-x' For
convenience we will also let the Poisson's ratios v+ = L = v. With these choices the
symbolism introduced previously can be used; in particular, E= E+x/E+: and ~ = cx+x/cx+:.
In terms of the dimensionless stress functionf = F/(L 2E+xcx+:To), the zero traction bound
ary conditions at ( = I are

(42a)

and the zero normal traction-zero axial displacement boundary conditions at ( = 0 are

(42b)

The continuity of tractions and displacements at the interface can be written as

f+ - f- = 0 (43a)

f+.{ - f-,{ = 0 (43b)

(f+ -Ef_),,,+e2[lir+ -L -vEU+ - f-).~d = 0 (43c)

(f+ -Ef_),m+ e2 {lir+ -'L +[(E+ -vE)f+ -(E_ -vE)f-l.~~t= 0, (43d)

where E± = E±x/G±. The last two conditions are derived by first differentiating the dis
placement continuity conditions with respect to x to obtain strain continuity conditions.
The stress-strain relations given in the Appendix are then used to express, in each layer,
the strains in terms of stresses and the temperature, with the stresses expressed in terms of
the dimensionless stress function f. Also, (43a) is used to eliminate a pair of terms that
would otherwise appear in (43c).

If we seek a solution of the form of (32) in each layer, then (30) and conditions (42a, b)
and (43a, b, c, d) provide the recurrence relations necessary to generate the unknown func
tionsj<~). In particular, we findf~) = 0 and

j<t) = 8(~)(l-1i) ({-1)2({+2)
+ 6(1 +7£)

f (l) = O(~)(l-li) 1'(3_71'2)
- 6(1+7£) .. ...

To lowest order, the stresses at the interface computed from (44a, b) are

Uzz = (5/8)e28"r.,

Uxz = -(9/4)e(J'r.,

U+ xx = 38r.,

(44a)

(44b)

(4Sa)

(4Sb)

(45c)
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where

The size of the relative error for these approximations is O(H 2/1 2
).

CONCLUSIONS

771

(45d)

We have laid out a program to generate approximate two-dimensional temperature
fields and concomitant stress fields in a beam subjected to thermal loads. These fields can
be made as accurate as desired. This program is applicable even if the material properties,
such as the thermal conductivity, are severely anisotropic, or if the beam is layered. Our
error estimates are based on the Prager-Synge hypercircle method that requires prescribed
thermal and mechanical conditions at the ends ofthe beam to be satisfied by the approximate
solutions we construct. If this is not so, there will be end effects and a full two-dimensional
treatment is required to insure accuracy everywhere.

We emphasize again that, contrary to the assertions made or impressions left by some
authors, the elementary theory of thermoelastic beams, interpreted properly, is not based
on assuming variations of temperature, displacements or stresses through the thickness.
Our approach shows one may infer these thickness distributions-even if they have kinks
at interfaces, as is the usual case with laminates-after the one-dimensional beam equations
have been solved.
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APPENDIX

The relations used to derive (28a) and (43c, d) are

I I
6"" = ",x = F«(1",,-vl(1u)+rJ.xT = F(F,xx-vlF...)+rJ.xT,

x x
(AI)

(A2)

(A3)

where" and w are displacements in the x- and z-directions, respectively, and, in an alternative notation for
orthotropic materials,

v = Vxz = vuE./Ex'

Note that the value of l .. Ex/E. depends on the layer in question.


